Upper transition point for percolation on the enhanced binary tree: a sharpened lower bound.

نویسنده

  • Seung Ki Baek
چکیده

Hyperbolic structures are obtained by tiling a hyperbolic surface with negative Gaussian curvature. These structures generally exhibit two percolation transitions: a system-wide connection can be established at a certain occupation probability p = pc1, and there emerges a unique giant cluster at pc2 > pc1. There have been debates about locating the upper transition point of a prototypical hyperbolic structure called the enhanced binary tree (EBT), which is constructed by adding loops to a binary tree. This work presents its lower bound as pc2 ≳ 0.55 by using phenomenological renormalization-group methods and discusses some solvable models related to the EBT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Upper Bound on the First Zagreb Index in Trees

In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.

متن کامل

Systematic analysis of bounds on power consumption in pipelined and non-pipelined multipliers

This paper presents a systematic theoretical approach for the analysis of bounds on power consumption in Baugh-Wooley, binary tree and Wallace tree multi-pliers. This is achieved by rst developing state transition diagrams (STDs) for the sub-circuits making up the multipliers. The STD is comprised of states and edges, with the edges representing a transition (switching activity) from one state ...

متن کامل

On trees attaining an upper bound on the total domination number

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

متن کامل

Upper bound and numerical analysis of cyclic expansion extrusion (CEE) process

Deformation of the material during cyclic expansion extrusion (CEE) is investigated using upper-bound theorem. The analytical approximation of forming loads agrees very well with the FEM results for different amounts of chamber diameter, friction factor and also for lower die angles. However, the difference between analytical and numerical solution increases at higher die angles which are expla...

متن کامل

Point-Set Embeddability of 2-Colored Trees

In this paper we study bichromatic point-set embeddings of 2-colored trees on 2-colored point sets, i.e., point-set embeddings of trees (whose vertices are colored red and blue) on point sets (whose points are colored red and blue) such that each red (blue) vertex is mapped to a red (resp. blue) point. We prove that deciding whether a given 2-colored tree admits a bichromatic point-set embeddin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012